acid and finding its sign of rotation. This acid is the isomer giving the most hindered transition state and, if the absolute configuration of the acid is known, the absolute configuration of the amine can often be deduced.

Coupling of the three amines with an excess of 2-phenylbutyric acid gave, in each case, recovered acid with a positive neat rotation and positive rotation in methanol. Since the structural changes among the three amines are not likely to alter group interactions in the 2-phenylbutyramides, 1-methylhexylamine and 1,4-dimethylpentylamine have the same absolute configuration as 1,3-dimethylbutylamine, namely R-(-) referred to neat rotations. As was mentioned above, in this series of amines R = L and taste turned out to be a reliable guide to absolute configuration.

Experimental Section

Elemental analyses were done under the direction of E. Zielinski and rotations under the direction of A. J. Damascus. Melting points were determined in a stirred bath and are uncorrected.

Resolutions.---1,3-Dimethylbutylamine (101 g, 1.0 mol) and 150 g (1.0 mol) of L-(+)-tartaric acid were dissolved in 600 ml of methanol, and the solution allowed to stand overnight at room temperature. The product (98.2 g) was crystallized three times from 2.5 parts of methanol to yield 41.2 g of the tartrate salt, mp 128–131°, $[\alpha]^{28}D + 21.0°$ (c 1, MeOH). Anal. Calcd for $C_{10}H_{21}NO_6 \cdot \frac{1}{3}H_2O$: C, 46.68; H, 8.49; N, 5.44. Found: C, 46.91; H, 8.50; N, 5.46.

The above tartrate (30.2 g, 0.12 mol) was suspended in 150 ml of ether plus 50 ml of water. Sodium hydroxide (50%, 20 ml, 0.36 mol) was added and the mixture shaken vigorously. The ether layer was washed with 25 ml of 5 M potassium carbonate, and dried over anhydrous potassium carbonate; the ether was and the over annythed spectassian carbonate, the event was fractionated to yield 9.96 g (82%) of 1,3-dimethylbutylamine: bp 106-107°; $[\alpha]^{25}D - 11.2^{\circ}$ (neat), +3.5° (c 1, MeOH) [lit.⁹ - 10.7° (neat)]. Anal. Calcd for C₆H₁₅N: N, 13.84. Found: N, 13.65.

C₆₁₁₁₅N; N, 15.04. Found: N, 15.05. 1-Methylhexylamine tartrate had mp 109–110°; $[\alpha]^{26}D + 19.0°$ (c 1, MeOH). Anal. Calcd for C₁₁H₂₈NO₆: C, 49.80; H, 8.74; N, 5.28. Found: C, 49.53; H, 8.90; N, 5.12. The free base had bp 140°; $[\alpha]^{26}D - 6.7°$ (neat), -0.8° (c 10, MeOH). Anal. Calcd for C₇H₁₇N: N, 12.16. Found: N 1001

N, 12.21.

1, 12.21. 1,4-Dimethylpentylamine tartrate had mp 142–144°; $[\alpha]^{28}D$ +19.5° (c 1, MeOH). Anal. Calcd for C₁₁H₂₈NO₆: C, 49.80; H, 8.74; N, 5.28. Found: C, 49.79; H, 8.90; N, 5.12. The free base had bp 133°; $[\alpha]^{25}D - 7.2°$ (neat), -0.6° (c 10, MeOH). Anal. Calcd for C₇H₁₇N: N, 12.16. Found: N, 12.49

12.48.

N-p-Toluenesulfonyl-L-1,3-dimethylbutylamine.-L-Leucinol N-p-toluenesulfonamide O-p-toluenesulfonate⁶ (8.50 g, 0.02 mol), mp 105–107°, $[\alpha]^{26}$ p -54.1° (c 1, MeOH), was reduced with LiAlH4 in refluxing ether. Crystallization of the crude product from *n*-pentane gave the desired amide, 3.29 g (65%), mp 65–67°, $[\alpha]^{25}D + 3.8^{\circ}$ (c 1, MeOH); lit.⁵ mp 62–63°, $[\alpha]^{18}D + 1.4^{\circ}$ (c 0.8, EtOH).

Resolved 1,3-dimethylbutylamine (1.0 g, 0.01 mol) was treated with *p*-toluenesulfonyl chloride in pyridine. Crystallization of the crude product from *n*-pentane yielded the toluenesulfon-amide, 2.03 g (80%), mp 65-67°, $[\alpha]^{28}$ D +4.5° (*c* 1, MeOH). *Anal.* Calcd for C₁₃H₂₁NO₂S: C, 61.14; H, 8.29; N, 5.49;

S, 12.56. Found: C, 61.45; H, 8.14; N, 5.78; S, 12.73.

Asymmetric Syntheses.—Racemic 2-phenylbutyric acid (9.84 g, 0.06 mol) was dissolved in 50 ml of methylene chloride, and 4.04 g (0.04 mol) of resolved 1,3-dimethylbutylamine was added. The mixture was stirred in an ice bath and 8.24 g (0.04 mol) of dicyclohexylcarbodiimide in 40 ml of methylene chloride was added. After stirring 0.5 hr at room temperature, the dicyclohexylurea was removed by filtration and the methylene chloride distilled. The residue was dissolved in ether and extracted with 50 ml of 1 N sodium hydroxide. The basic extract was acidified

with hydrochloric acid and the unreacted 2-phenylbutyric acid taken up in ether; the ether extract was washed twice with water, dried over sodium sulfate, and distilled. The residue was dried overnight at room temperature under vacuum. Recovered 2phenylbutyric acid (3.40 g, 0.0207 mol) had $[\alpha]^{27}D + 7.4^{\circ}$ (neat), $+6.3^{\circ}$ (c 10, MeOH).

When optically active 1-methylhexylamine was used, unreacted 2-phenylbutyric acid showed $[\alpha]^{26}D + 7.3^{\circ}$ (neat), $+5.7^{\circ}$ (c 10, MeOH).

When optically active 1,4-dimethylpentylamine was used, unreacted 2-phenylbutyric acid had $[\alpha]^{27}D + 8.4^{\circ}$ (neat), +6.5° (c 10, MeOH).

Registry No.-1-Methylhexylamine, 6240-90-0; 1methylhexylamine tartrate, 24118-68-1; 1,4-dimethylpentylamine, 24110-97-2; 1,4-dimethylpentylamine tartrate, 24215-84-7; 1,3-dimethylbutylamine tartrate, 24118-69-2; 1,3-dimethylbutylamine toluene sulfonamide, 24118-70-5.

Reaction of Perfluoro Olefins with Bromine Trifluoride in Bromine

ELIZABETH S. LO,¹ JOSEPHINE D. READIO,² AND HYMAN ISERSON

Research Department, Thiokol Chemical Corporation, Trenton, New Jersey 08607

Received October 21, 1969

Bromine trifluoride has been used as a source of BrF in organic reactions; however, the references are few.^{3,4} Chambers, et al.,⁵ have reported the addition of BrF to hexafluoropropene to give the 2-bromo derivative. No information is available concerning such reactions with more complex perfluoro olefins. The present investigation concerns the reactions of bromine trifluoride in bromine with some perfluoroheptenes and hexenes. Davis and Larsen,⁶ using BrF_3 in the presence of a large excess of Br_2 , have replaced Br by F in bromofluoroethanes. In the present study no perfluoroalkanes were found. The major products of the reactive olefins are the perfluoroalkyl monobromides.

Perfluoroheptene-1 gave almost exclusively perfluoro-2-bromoheptane (87%). Other fractions isolated in small amounts were perfluoro-trans-2-bromoheptene-2 (4%) and perfluoro-trans-2-bromohexene-2 (9%). Perfluoroheptane and 1-bromoheptane were absent in the crude product as shown by vpc analysis. Perfluoroheptene-2,7 synthesized by treating perfluoroheptene-1 with cesium fluoride,⁸ gave a mixture of 50:50 perfluoro-2-bromo- and -3-bromoheptanes.

The reaction of BrF₃ in Br₂ with the three isomeric

(1) To whom inquiries should be addressed: 102 Maclean Circle, Princeton. N. J. 08540.

- (2) Reaction Motors Division, Thiokol Chemical Corp., Denville, N. J.
- W. K. R. Musgrave, Advan. Fluorine Chem., 1, 12 (1960).
 E. T. McBee, V. V. Lindgren, and W. B. Ligett, Ind. Eng. Chem., 39,

378 (1947).

(5) R. D. Chambers, W. K. R. Musgrave, and J. Savory, Proc. Chem. Soc. London, 113 (1961).

(6) R. A. Davis and E. R. Larsen, J. Org. Chem., 32, 3478 (1967).
(7) W. T. Miller, Jr., J. Amer. Chem. Soc., 32, 3091 (1960), had probably snythesized perfluoroheptene-2; however, no attempt was made to identify

(8) R. N. Dresdner, F. N. Tlumac, and J. A. Young, J. Org. Chem., 30, 3524 (1965).

⁽⁹⁾ R. H. Holm, A. Chakravorty, and G. O. Dudek, J. Amer. Chem. Soc., 86, 379 (1964).

hexafluoropropene dimers⁹ gave only two monobromides. No perfluorohexane was found in the product.

$$1/_{\$}(BrF_{\$} + Br_{2})$$
trans-(CF_{\$})₂CFCF=CFCF_{\$\$}
1
cis-(CF_{\$\$})_{2}CFCF=CFCF_{\$\$} + BrF \longrightarrow (CF_{\$\$})_{2}CFCF_{2}CFBrCF_{\$\$}

2
4
(CF_{\$\$})₂C=CFCF₂CF_{\$\$} +
3
(CF_{\$\$})₂CFCFBrCF₂CF_{\$\$}

As was evident from the data in Table I, the formation of these products arose almost exclusively from the trans olefin 1.

TABLE I						
REACTION OF	HEXAFLUOROPROPENE DIMI	ER WITH BrF ₈ -Br ₂				
Structure	% ^a present before reaction	% ^a present after reaction				
1	87.43	12.53				
2	7.09	7.13				
3	5.48	5.16				
4	0	37.46				
5	0	37.72				

^a Area measurement by gas chromatographic analysis.

The structures of the two perfluoro monobromides were assigned on the basis of the ¹⁹F nmr results. The room temperature ¹⁹F nmr data of structures 4 and 5 were given in Table II.

	TAR	BLE II		
	4		5	
(CFa)-CF-	Ψ 72. 2	U	φ 60.4	5
CF_{3}	75.5		77.9	
CF_{2}	98.2, 103.4	296	109.5, 114.5	283
	108.4, 113.7		117.4, 122.4	
CFBr	142.1		137.7	
CF	180.8		171.5.172.0	

The assignment of structure was based on chemical shifts, area measurements, and observed coupling patterns. The data are consistent with the conclusion that structurally related fluorines which are closest to the CFBr group in the above two compounds will be deshielded to the greatest extent. The deshielding effect of the perfluoroisopropyl group is likewise considered.

The high-resolution nmr spectrum of 4 shows complex multiplets for $(CF_3)_2CF$, CF_3CFBr , and $(CF_3)_2CF$ fluorines, while the CF_2 and CFBr nuclei appear as broad unresolved peaks. The $(CF_3)_2CF$ fluorines which give essentially one absorption at room temperature are seen as two distinct signals (71.7 and 79.8) at low temperature (-105°) . The individual members of the AB quartet attributed to the CF₂ geminal fluorines are unaffected by variations in temperature. The chemical-shift difference, however, increases from 505 Hz at 24° to 568 Hz at -105° . Upfield shifts in the peak positions of the CFBr and $(CF_3)_2CF$ fluorines [CFBr, ϕ 145.0; (CF₃)₂CF, ϕ 181.4] occur with lowering of temperature. These observations reflect changes in conformer population. Studies from -105 to 80° indicate that at -105° interconversion between conformers has not been slowed sufficiently so that individual rotamers are observed.

The high-resolution room-temperature nmr spectrum of 5 shows the (CF3)₂CF fluorines as an unsymmetrical multiplet. The CF_3CF_2 fluorines appear as a doublet of doublets (J = 6.6 Hz). The individual members of the AB quartet (chemical-shift difference = 340 Hz at 24°) due to the geminal CF_2 fluorines are broad as are the CFBr and CF fluorines. The latter shows doublet structure due to coupling with the adjacent CFBr. Spectra obtained at low temperature (-105°) show the following differences resulting from changes in conformer population. The isopropyl CF₃'s are partially resolved (ϕ 69.4 and 70.0). The chemical-shift difference of the geminal CF₂ fluorines increases to 392 Hz. Both CFBr and (CF₃)₂CF fluorines experience upfield shifts as the temperature is lowered [CFBr, 141.3; (CF₃)₂CF, 173.3 Hz]. As in the case of 4 no individual rotamers were observed.

The above results indicated that bromoperfluoro alkanes may be successfully prepared by the reaction of certain perfluoro alkenes with bromine trifluoride in bromine. In case of perfluoroheptene-1, the addition of BrF was stereospecific and yielded only the 2-bromo adduct. On the other hand, reactions involving additions to internal double bonds such as perfluoroheptene-2 and trans-perfluoro-4-methylpentene-2 (1) led to nearly equal amounts of the two possible adducts and thus proceeded with little selectivity. The apparent difference in reactivity between structures 1 and 2 and structures 2 and cis-perfluoroheptene-2 clearly resulted from the steric effect of the large perfluoroisopropyl group next to an internal double bond. This observation was further substantiated by the fact that the highly substituted double bonds of hexafluoropropene trimer⁹ did not give BrF adducts under similar reaction conditions.

Experimental Section

The chromatographic preparative-scale separations for perfluoroheptenes and their bromides were performed on a Nester-Faust "Prepkro" unit using a column packed with 30% SF-96 on Chromosorb P (24 ft \times ³/₈ in.). The chromatographic prepara-tive scale separations for hexafluoropropene dimers and their bromides were performed on a Wilkens Autoprep Model A 700 utilizing a column at 60° packed with 30% SE-30 on Chromosorb W (20 ft \times $^{3}/_{8}$ in.). The elemental analyses were performed by Schwarzkopf Microanalytical Laboratories, Woodside, N. Y. Infrared spectra were obtained with a Perkin-Elmer Model 137 double-beam spectrophotometer. The ¹⁹F nmr spectra were ob-tained with a 60-MHz Varian DP-60 spectrometer. Spectra were calibrated by the side-band modulation technique using a Hewlett-Packard wide range oscillator. All ¹⁹F chemical shifts were determined with CFCl₃ as an internal standard. Sample concentrations were approximately 20-40% by weight in CFCl₃. A Bendix time-of-flight mass spectrometer (Model 12-101) with source elements S14-107 was employed to record the mass spectra at $70 \, \mathrm{eV}$

Reaction of Perfluoroheptene-1 with Bromine Trifluoride and Bromine.-Bromine trifluoride (0.06 mol) and bromine (0.12 mol) were placed in an ice-cooled flask equipped with a thermometer, a dropping funnel, a reflux condenser, and a stirrer. Perfluoroheptene-1¹⁰ (0.143 mol) was added slowly to the BrF₃-Br₂ solution. The reaction was extremely exothermic. An ice bath was used to maintain the reaction temperature at 40-50°

⁽⁹⁾ Synthesized according to W. J. Brehm, et al., U. S. Patent 2,918,501 (1959).

⁽¹⁰⁾ Synthesized according to J. D. LaZerte, L. J. Hals, T. S. Reid, and G. H. Smith, J. Amer. Chem. Soc., 75, 4525 (1953).

during the addition. After addition, stirring was continued for 1 hr at 25°. Excess BrF_3 and Br_2 were decomposed by washing with 10% aqueous NaHSO₃. The fluorocarbon layer was water washed and dried (MgSO₄). The crude product (89%) was fractionated by gas chromatography. The following peaks were collected and identified.

Perfluoro-*trans*-2-bromohexene-2 (9%): ¹⁹F nmr CF₃C=-C, ϕ 76.6, CF₃CF₂, 82.3, CF₄C=, 115.3, CF₃CF₂, 125.4, CF=, 143.1; ir (CFCl₃) 7.45 (s), 7.7-8.6, (vs), 8.82 and 8.95 (doublet, m), 9.98 (m), 10.6 (s), 10.9 (s), 12.65 (s), 13.48 (m), 13.9 (s), 14.3 (s), 14.55 (w), 14.9 μ (m); mass spectrum *m/e* (relative intensity) ion 343, 341 (6.5, 6.0) C₆H₁₀ Br⁺; 243, 241 (2.9, 2.5) C₄F₆Br⁺; 231 (0.7) C₅F₉⁺; 219 (0.7) C₄F₉⁺; 193, 191 (5.2, 4.9) C₅F₄Br⁺; 181, 179 (24.3, 20.0) C₄F₇⁺ and C₂F₄Br⁺; 169 (2.9) C₅F₄Fr; 150 (0.9) C₃F₆⁺; 131, 129 (30.9, 8.8) C₃F₆⁺ and CF₂Br⁺; 119 (42.1) C₉F₅⁺; 112 (1.9) C₃F₄⁺; 100 (17.4) C₂F₄⁺; 93 (14.8) C₃F₈⁺; 81,79 (4.7, 4.3) Br⁺; 69 (100) CF₃⁺; 50 (19.8) CF₂⁺; 31 (80.0) CF⁺.

Perfluoro-*trans*-2-bromo-heptene-2 (4%): ¹⁹F nmr CF₈C=C, ϕ 76.6, CF₃CF₂ 82.2, CF₂C=, 114.6, CF₂CF₂C=, 121.7, CF₃CF₂, 127.7, CF=, 142.5; ir (CFCl₃) 7.4 (m), 7.6-8.5 (vs), 8.75 (s), 10.2 (w), 10.45 (w), 10.7 (m), 10.82 (m), 13.45 (m), 14.1 (m), 14.6 (m), 14.7 μ (sh); mass spectrum *m/e* (relative intensity) ion 393, 391 (7.0, 6.5) C₇F₁₂Br⁺; 374, 372 (0.7, 0.6), C₇F₁₁Br⁺; 293, 291 (1.5, 1.1) C₅F₈Br⁺; 243, 241 (0.9, 0.8) C₄F₆Br⁺; 231, 229 (3.4, 3.0) C₄F₆Br⁺; 193, 191 (1.5, 1.3) C₈F₄Br⁺; 181, 179 (31.6, 30.2) C₄F₄Br⁺; 169 (18.9) C₅F₇⁺; 162, 160 (2.6, 1.6) C₄F₆⁺ and C₂F₄Br⁺; 150 (1.3) C₃F₆⁺; 131, 129 (55.2, 13.2) C₃F₅ and CF₂-Br⁺; 119 (36.3) C₂F₅⁺; 112 (3.2) C₃F₄⁺; 100 (43.9) C₂F₄⁺; 93 (20.8) C₃F₃⁺; 81, 79 (8.9, 3.9) C₂F₃⁺ and Br⁺; 69 (100) CF₅⁺; 50 (20.5) CF₂⁺; 31 (91.0) CF⁺.

Perfluoro-2-bromoheptane (87%): bp 114–116°, n^{20} D 1.3036; ¹⁰F nmr CF₃CFBr, ϕ 76.0, CF₃CF₂, 81.8, CF₂CFBr, 113.9, CF₂-CF₂CFBr, 119.5, CF₃CF₂CF₂, 123.1, CF₃CF₂, 127.1, CFBr, 141.2; ir 7.4 (m), 7.6–9.0 (s), 9.71 (m), 9.82 and 9.9 (doublet, m), 10.2 (m), 10.6 (m), 10.92 (s), 11.3 (m), 11.6 (w), 12.1 (w), 12.45 (m), 12.57 (m), 12.92 (m), 13.1 (w), 13.4 (s), 13.62 (s), 14.1 (s), 14.7 μ (s); mass spectrum m/e (relative intensity) ion 450, 448 (4.5, 4.0) C₇F₁₅Br⁺ (parent ion); 431, 429 (0.9, 0.8) C₇F₁₄Br⁺; 231, 229 (5.0, 4.3) C₃F₆Br⁺; 193, 191 (6.2, 5.7) C₃F₄Br⁺; 181, 179 (45.2, 37.6) C₂F₄Br⁺; 169 (13.1) C₃F₇⁺; 162, 160 (3.6 1.9) C₂F₃Br⁺; 150 (3.8) C₃F₆⁺; 131, 129 (78.5, 14.3) C₃F₅⁺ and CF₂Br⁺; 119 (51.2) C₂F₅⁺; 112 (4.3) C₃F₄⁺; 100 (51.3) C₂F₄⁺; 93 (21.4) C₃F₃⁺; 81, 79 (9.5, 4.8) C₄F₅⁺ and Br⁺; 69 (100) CF₃⁺; 50 (10.7) CF₂⁺; 31 (73.8) CF⁺.

Preparation of Perfluoroheptene-2.⁷—Perfluoroheptene-1 (100 g) was heated under reflux (80–76°) with powdered cesium fluoride (3 g) for 10 hr with stirring. The reaction mixture was washed with water, dried (MgSO₄), and distilled giving a fraction (83 g) which boiled at 75.5–76.5°. Vpc collections were carried out at 20°. Area determinations indicated the presence of perfluoro-*trans*-heptene-2 (74%), *cis* heptene-2 (16%), and unreacted perfluoroheptene-1 (7%).

Perfluoro-trans-heptene-2: ir 6.0 (C=C, w), 7.15 (m), 7.45 (s), 7.7-8.9 (vs), 9.5 (m), 9.78 (m), 10.15 (m), 10.65 (w), 10.8 (w), 11.2 (s), 12.1 (m), 12.3 (m), 12.5 (m), 13.39 and 13.45 (doublet, s), 13.8 (s), 14.0 (w), 14.4 (m), 14.7 μ (w); ¹⁹F nmr CF₃C=C, ϕ 70.0, CF₃CF₂, 82.0, CF₂C=C, 119.2, CF₂CF₂C=C, 125.3, CF₃CF₂, 127.2, CF=CF, 158.3.

Perfluoro-cis-heptene-2: ir (CFCl₃) 5.9 (C=C, m), 7.5 (s), 7.9–8.7 (vs), 8.9 (s), 9.1 (m), 9.4 (m), 9.6 (m), 9.8 (w), 10.2 (m), 10.68 (m), 10.9 (w), 11.3 (w), 12.5 (s), 13.45 (m), 13.68 and 13.8 μ (doublet, s); ¹⁹F nmr CF₃C=C, ϕ 66.3, CF₃CF₂, 81.9, CF₂C=C, 116.9, CF₂CF₂C=C, 124.1, CF₃CF₂, 127.1, CF₂CF=, 137.7, CF₃CF==, 141.0.

Reaction of Perfluoroheptene-2 with Bromine Trifluoride and Bromine.—A mixture of trans- (82%) and cis- (18%) perfluoroheptenes-2 (35 g, 0.1 mol) was allowed to react with a solution of BrF₈ (5.5 g, 0.04 mol) and Br₂ (12.8 g, 0.08 mol) as described previously. The crude product contained about 10 g of the unreacted perfluoroheptenes-2 (trans 80% and cis 20%) and 26 g (58%) of a colorless liquid. Vpc analysis of the colorless liquid at 130° showed one large peak with a shoulder. The peak and shoulder were collected together and analyzed by ¹⁹F nmr. Peak intensity ratios indicated that there were two components present in 50:50 ratio. They were identified as perfluoro-2 bromoheptane and perfluoro-3-bromoheptane. The individual peaks in the ¹⁹F nmr spectra were assigned as follows: CF₃CF₃D, ϕ 76.0 (2-bromo), CF₃CF₂CFBr, 78.8 (3-bromo), CF₃CF₂, 81.8 (2bromo + 3-bromo), CF₂CFBr, 113.4 (3-bromo), CF₃CFBr, 113.9 (2-bromo), CF₃CF₂CFBr, 117.0 (3-bromo), CF₂CF₂CFBr, 119.5 (2-bromo), CF₃CF₂CF₂, 119.9 (3-bromo), CF₃CF₂CF₂, 123.1 (2-bromo), CF₃CF₂, 127.0 (2-bromo + 3-bromo), CFBr, 139.4 (3-bromo), CFBr, 141.1 (2-bromo). The infrared spectrum of the mixture shows considerable band overlapping and the presence of the 3-bromo isomer could not be definitely established by this method. The mass spectrum of the mixture, except for peak intensities, was very similar to that obtained for the 2-bromo isomer with the $C_7F_{1b}Br^+$ fragment being the highest fragment observed in the spectrum.

Reaction of Hexafluoropropene Dimer with Bromine Trifluoride in Bromine.—Hexafluoropropene dimer⁹ C₆F₁₂ (300 g, 1 mol) was added during 45 min to an ice-cooled solution of BrF₃ (46 g, 0.33 mol) in Br₂ (55 g, 0.33 mol). The product (340 g) contained the three isomers of C₆F₁₂ (1, 2, 3), in different ratios (see text, Table I) and the two isomers of C₆F₁₃Br (4, 5). The monobromides were separated from the dimers by fractional distillation. The mixed bromides have the following physical constants: bp 97-100°, d²¹ 1.9220; n²⁰D 1.3049; calcd molar refractivity (MR) 37.5, found 39.1. The two bromides were further fractionated by gas chromatography and analyzed by mass spectroscopy and ¹⁹F nmr.

4: mass spectrum m/e (relative intensity) ion 400, 398 (0.7, 0.6) $C_6F_{13}Br^+$ (parent ion); 381, 379 (0.3, 0.2) $C_6F_{12}Br^+$; 293, 291 (0.8, 0.7) $C_5F_8Br^+$; 243, 241 (0.1, 0.2) $C_4F_6Br^+$; 231, 229 (1.2, 0.7) 193, 191 (0.7, 0.3) $C_3F_1Br^+$ and $C_5F_7^+$; 181 (6.3) $C_4F_7^+$; 169 (0.2) $C_3F_7^+$; 162 (1.2) $C_2F_3Br^+$ and $C_4F_8^+$; 160 (0.9) $C_2F_3Br^+$; 131, 129 (8.8, 1.8) CF_2Br^+ and $C_3F_8^+$; 124 (0.4) $C_4F_4^+$; 119 (0.9) $C_2F_5^+$; 112 (1.2) $C_3F_4^+$; 100 (4.7) $C_2F_4^+$; 93 (5.1) $C_3F_3^+$; 81, 79 (2.6, 1.6) Br^+ ; 69 (100.0) CF_3^+ ; 50 (2.6) CF_2^+ ; 31 (17.6) CF^+ ; ir 7.6-8.5 (vs), 8.75 (s), 8.92 (s), 10.2 (s), 10.9 (s), 12.3 (s), 12.7 (m), 13.2 (s), 13.6 (s), 14.0 (w), 14.2 (s), 14.4 μ (s).

Anal. Calcd for C₆F₁₈Br: C, 18.06; F, 61.91; Br, 20.03. Found: C, 18.20; F, 61.66; Br, 20.13.

Anal. Calcd for $C_6F_{18}Br$: C, 18.06; F, 61.91; Br, 20.03. Found: C, 18.07; F, 61.71; Br, 20.26.

Registry No.—Bromine trifluoride, 7787-71-5; perfluoroheptene-1, 355-63-5; perfluoro-*trans*-2-bromohexene-2, 24010-45-5; perfluoro-*trans*-2-bromoheptene-2, 24057-16-7; perfluoro-2-bromoheptane, 24010-68-2; perfluoro-*trans*-heptene-2, 24010-46-6; perfluoro-*cis*heptene-2, 24010-47-7; **4**, 24010-48-8; **5**, 24057-17-8.

Acknowledgments.—The authors are indebted to Dr. S. W. Osborn for his interest and encouragement in this work, to Mr. J. Magazzu for laboratory assistance, and to J. Christakos for the mass spectral determinations.

Directing a Chlorination Reaction

ELI PERRY

Monsanto Company, Central Research Department, St. Louis, Missouri 63166

Received October 8, 1969

We have been able to modify the course of the reaction between chlorine and hexane by carrying out the reaction in a "molecular sieve." When hexane,